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In this note we continue our investigation [1] of multigrid methods as preconditioners to
a Jacobian-free Newton–Krylov method [2, 3]. We consider two different options for the
formation of the coarse grid operators required in the multigrid preconditioner. The first
option (Method 1) involves restricting the dependent variables down through a series of
grids, rediscritizing, and forming the coarse grid matrices. In the second option, considered
(Method 2), the coarse grid matrices are formed from the fine grid matrix using a Galerkin
[4] procedure. Both methods use low-complexity piecewise constant restriction and pro-
longation. Additionally, we consider the option of using either a coupled or a distributed
(segregated) [4, 5] approach in our preconditioner. In the more standard coupled approach,
the multigrid smoother works directly on the coupled system of equations. In the distributed
approach, each equation in the system is treated individually in the preconditioner and ap-
proximately inverted using a scalar multigrid approach. We use the standard driven cavity
problem [6] and the natural convection problem [7] as our test problems. Other research in
this area includes the work of Pernice [8], who is studying combinations of SIMPLE [9],
nonlinear multigrid, and Newton–Krylov methods.

Newton’s method requires the solution of the linear system

Jnδun+1 = −F(un), un+1 = un + dδun+1, (1)

whereJ is the Jacobian matrix,F(u) is the nonlinear system of equations (the discretized
partial differential equations),u is the state vector,δu is the Newton update vector,d is
an adaptively chosen damping scalar, andn is the Newton iteration level. The Generalized
Minimal RESidual (GMRES) algorithm [10] is used to solve Eq. (1). The GMRES algorithm
requires the action of the Jacobian (J) only in the form of Jacobian-vector products, which
may be approximated by a first-order Taylor series expansion [2, 3],

Jv ≈ [F(u+ εv)− F(u)]/ε, (2)
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wherev is a Krylov vector (part of the GMRES iteration), andε is a small perturbation.
The use of an iterative technique to solve Eq. (1) does not require the exact solution of the
linear system as discussed in [1]. The right preconditioned version of Eq. (2) is

JP−1v ≈ [F(u+ εP−1v)− F(u)]/ε. (3)

Only the matrix (or matrices) which is required forP−1, the preconditioning process, is
formed. There are two choices to be made: the linearization to be used to form the matrices
required inP−1 and the linear iterative method to be used for the action ofP−1. For the
second choice we will use multigrid as in [1, 5].

An option available to the Jacobian-free method is the use of distributed relaxation
(a segregated solver) as a preconditioner,

JP−1v ≈ Fcoupled
(
u+ εP−1

distv
)− Fcoupled(u)

ε
. (4)

Here,Fcoupled(u) denotes the nonlinear function evaluated fully coupled (as is always the
case), andP−1

dist denotes the preconditioning process handled in a distributed manner. We have
used a distributed solution approach as a preconditioner for the Jacobian-free method on a
system of time-dependent reaction diffusion equations [5]. In this paper we will demonstrate
the capability on a steady-state convection diffusion system.

The two-dimensional incompressible Navier–Stokes equations, in stream function–
vorticity (ψ,ω) formulation are

∇2ψ = ω, (5)

∇ · ( EVω)− 1

Re
∇2ω = 0, (6)

with EV = V1x̂ + V2 ŷ, andV1 = ∂ψ

∂y , V2 = − ∂ψ

∂x . The standard driven cavity [6] in the unit
square is used as the first model problem. A finite volume discretization is used with second-
order [11] upwind differencing for the convective operator and second-order central dif-
ferencing for the diffusion operators. First-order upwinding is used in the preconditioner
[12], and the advecting velocity is treated as known in the preconditioner. All simulations
are started on a 10× 10 grid and a mesh sequencing algorithm [1] is used to move up to
a 320× 320 grid. The performance is compared using the two different coarse grid opera-
tors, Method 1 and Method 2, both with the coupled preconditioner. The coupled multigrid
preconditioner uses a block version of symmetric Gauss–Seidel (SGS) as a smoother. The
block is a 2× 2, couplingψ andω in each finite volume. The preconditioner consists of one
V-cycle with an equal, and fixed, number of pre- and post-smoothing sweeps. The nonlinear
convergence tolerance is [

∑Ndim
i=1 (Fψ,i )

2+ (Fω,i )2]
1
2 < 10−4, whereFψ,i and Fω,i are the

nonlinear residuals at grid celli , and there areNdimgrid cells. The linear convergence toler-
ance (at each Newton iteration) is‖Jnδun+1+ F(un)‖2 < γ ‖F(un)‖2, with γ = 5× 10−2.

Table I presents results for for Re= 1000. In the second column the numbers 2–1 mean 2
smoothing passes (pre and post) and 1 V-cycle. All CPU times are on an SGI Octane. There
is a clear performance advantage for Method 1, although Method 2 is always competitive.
This is a correction to earlier results presented in [13], which were in error by giving the
advantage to Method 2. We see that for this problem, additional smoothing (4–1) improves
the performance of Method 2.
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TABLE I

Performance of Method 1 and Method 2 (Coupled Smoother) for Re = 1000

Grid 4 Grid 5 Grid 6
Multigrid 80× 80 160× 160 320× 320 CPU

option time
Method smooth-V N K/N N K/N N K/N (s)

Method 1 2-1 4 5.00 4 3.75 4 2.5 91
Method 1 4-1 4 5.25 4 3.75 3 2.66 123

Method 2 2-1 5 7.80 4 6.50 4 12.00 264
Method 2 4-1 4 5.50 4 5.00 4 3.00 162

Note. N=Newton iterations;K/N=Krylov iterations per Newton iteration.

To further study the performance of our proposed methods we will solve the two-
dimensional incompressible Navier–Stokes plus energy equations, in stream function–
vorticity–temperature (ψ,ω, T) formulation, with the Boussinesq approximation,

∇2ψ = ω, (7)

∇ · ( EVω)−∇2ω = Gr∇xT, (8)

∇ · ( EV T)− 1

Pr
∇2T = 0. (9)

Gr is the Grashof number, Pr is the Prandtl number (0.7 is used here), and the gravity vector
is in the negativey direction. The standard natural convection problem [7] in the unit square
is used as the second model problem. All simulations are started on a 10× 10 grid and a
mesh sequencing algorithm is used to move up to a 320× 320 grid. Damping is applied
to limit the maximum relative change in the temperature, in any given finite volume, to no
more than 50% per Newton iteration. The coupled multigrid preconditioner is analogous
to that of the previous problem and uses a block version of symmetric Gauss–Seidel. For
the natural convection problem the block is a 3× 3, couplingψ,ω, andT in each finite
volume. The preconditioner consists of one V-cycle with equal, and fixed, number of pre-
and post-smoothing sweeps. The nonlinear convergence tolerance is a normalized measure
‖F(un)‖2/‖F(u0)‖2 < 10−4, and the linear convergence tolerance is‖Jnδun+1+ F(un)‖2 <
5× 10−2‖F(un)‖2.

On the driven cavity problem, we have used a simple, low-complexity coupled precon-
ditioner. Instead, in the preconditioner, one could approximate the inverse of each equation
independently. This would be a “distributed relaxation” preconditioner, and would require
less memory and possibly less CPU time per iteration. In each of the three separate elliptic
solves we will use a scalar version of the proposed multigrid method with one V-cycle and
an SGS smoother. The only complication to this approach is that the boundary conditions
on Eq. (8) are a strong function ofψn+1, and the source term in Eq. (7) isωn+1. This com-
plication is addressed by using a 2× 2 linear solve, to coupleψ andω in the preconditioner,
only on the fine grid. In the distributed preconditioner the approximate inversion of Eq. (9)
is done first (one multigrid V-cycle) and then the 2× 2 linear solve, and then Eqs. (7) and
(8) are approximately inverted (one multigrid V-cycle each), followed by one more pass of
the 2× 2 linear solve.

Table II presents results for Method 1 and Method 2, for both the coupled and the dis-
tributed preconditioner, at Gr= 1× 105. Both Method 1 and Method 2 produce a small
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TABLE II

Comparison of Method 1 and Method 2 for for Gr = 1× 105, Coupled

and Distributed Smoother

Grid 4 Grid 5 Grid 6
Coarse 80× 80 160× 160 320× 320 CPU

grid Smoothing time
method option N K/N N K/N N K/N (s)

Method 1 Coup. 4 2.0 3 1.67 3 1.67 82
Method 2 Coup. 4 5.0 3 5.67 2 1.0 77

Method 1 Dist. 3 5.67 3 6.33 3 9.0 137
Method 2 Dist. 4 6.5 3 6.33 3 5.3 106

Note. N=Newton iterations;K/N=Krylov iterations per Newton iteration.

number of GMRES iteration per Newton iteration. It can be seen that the distributed pre-
conditioner may require more GMRES iterations per Newton iterations; however, due to its
low computational complexity (scalar elliptic problems) it is always competitive in terms
of CPU time. It appears that Method 2 is to be preferred for this problem.

Figure 1 is a plot of CPU time scaling, as a function grid dimension for Method 2,
using both the distributed and the coupled approaches, Gr= 1× 105. The data are for
80× 80, 160× 160, and 320× 320 problems. We include a reference line for linear scaling,
and we see that both approaches scale better than linear.

Table III compares the performances of Methods 1 and 2, coupled and distributed, for
Gr= 1.0× 107. This is a challenging boundary value problem and thus we use a continuation
process in which Gr= 5.0× 106 on the 80× 80 grid, Gr= 7.5× 106 on the 160× 160 grid,
and Gr= 1.0× 107 on the 320× 320 grid. With this continuation process all four approaches
could obtain the solution. We see that Method 2 is preferred here. The coupled approach
results in the minimum GMRES iterations while the distributed approach produces the
minimum CPU time.

FIG. 1. Scaling (CPU time vs problem size) of Newton–Krylov multigrid (NKMG) for coupled and distributed
preconditioners, Method 2, for Gr= 1.0× 105.
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TABLE III

Comparison of Method 1 and Method 2 for for Gr = 1× 107, Coupled

and Distributed Smoother

Grid 4 Grid 5 Grid 6
Coarse 80× 80 160× 160 320× 320 CPU

grid Smoothing time
method option N K/N N K/N N K/N (s)

Method 1 Coup. 5 12.80 6 14.50 7 18.71 847
Method 2 Coup. 4 8.75 4 10.50 4 15.75 464

Method 1 Dist. 6 18.83 5 21.80 5 26.40 580
Method 2 Dist. 4 9.00 4 14.25 4 24.75 446

Note. N=Newton iterations;K/N=Krylov iterations per Newton iteration.

We have presented a new nonlinear multilevel iterative method based on multigrid pre-
conditioned, Jacobian-free Newton–Krylov methods. Performance aspects of this new algo-
rithm have been demonstrated on two 2-D incompressible Navier–Stokes problems. Specif-
ically we have considered different options for forming the coarse grid matrices required in
the multigrid preconditioner and both coupled and distributed smoothers. It has been demon-
strated that simple linearizations and low-complexity multigrid methods can make effective
preconditioners for the Jacobian-free Newton–Krylov method. Method 1 and Method 2 are
both viable options as are the coupled and distributed approaches.
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